In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction
نویسندگان
چکیده
Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities.
منابع مشابه
In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufactura...
متن کاملExperimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings
Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO) film deposited on a transparently flexible polyethylene terephthalate (PET) substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film depo...
متن کاملEdge dislocation slows down oxide ion diffusion in doped CeO₂ by segregation of charged defects.
Strained oxide thin films are of interest for accelerating oxide ion conduction in electrochemical devices. Although the effect of elastic strain has been uncovered theoretically, the effect of dislocations on the diffusion kinetics in such strained oxides is yet unclear. Here we investigate a 1/2<110>{100} edge dislocation by performing atomistic simulations in 4-12% doped CeO2 as a model fast...
متن کاملStress control of plasma enhanced chemical vapor deposited silicon oxide film from tetraethoxysilane
Thin silicon dioxide films have been studied as a function of deposition parameters and annealing temperatures. Films were deposited by tetraethoxysilane (TEOS) dual-frequency plasma enhanced chemical vapor deposition with different time interval fractions of high-frequency and low-frequency plasma depositions. The samples were subsequently annealed up to 930 ◦C to investigate their stress beha...
متن کاملNano-scale fatigue study of LPCVD silicon nitride thin films using a mechanical-amplifier actuator
This paper describes a nano-scale tensile test to study the fatigue properties of LPCVD silicon nitride thin films using a novel electrostatic actuator design. Mechanical-amplifier devices made in silicon nitride thin films can apply controllable tensile stress (2.0–7.8 GPa) to test structures with relatively low actuation voltages (5.7–35.4 VRMS) at the resonant frequencies of the devices. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016